
LA-UR-19-30009
Approved for public release; distribution is unlimited.

Title: BER Q4 Report

Author(s): Dunbar, John Martin

Intended for: Report

Issued: 2019-10-02



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



BSSD 2019 Performance Metric Q4 
 
Goal: Develop metagenomics approaches to assess the functioning of microbial 
communities in the environment. 
 
Q4 Target: Summarize the latest computational approaches to analyze large complex 
‘omics’ datasets to describe microbial community function in environmental samples. 
 
Summary: 
 The LANL SFA in Terrestrial Microbial Carbon Cycling aims to inform climate modeling 
and enable carbon management in terrestrial ecosystems by discovering widespread biological 
processes that control carbon storage and release in temperate biome soils.  To achieve these 
goals, computational approaches are essential to analyze increasingly complex ‘omics’ data from 
microbial communities in environmental samples.   
 The SFA continues to leverage advances in ‘omics measurement technology and 
computation tools to decipher microbial community function in environmental samples.  The 
computational approach is aligned with the recent shift in the SFA’s research approach.  When 
the SFA began 10 years ago, computational approaches principally addressed “who is there” 
with extremely limited insight into function [1, 2].  Accessible ‘omics data for complex soil 
communities were primarily amplicon DNA sequences of taxonomic or functional marker genes 
obtained by PCR, cloning, and Sanger sequencing.  Computational tools for community analysis 
were nascent. Over the past decade, genome resources (DOE-Integrated Microbial Genomics 
database) and data acquisition increased 1000-fold, common computational pipelines for many 
analysis tasks have arisen, and the variety of ‘omics’ measurements has expanded to routinely 
include shotgun metagenomics, metatranscriptomics, and versions of metabolomics.  The SFA is 
capitalizing on these advances while also developing new computational techniques to decipher 
how communities with different patterns of carbon cycling function from the species to 
ecosystem level.   
 The SFA is establishing for routine use a computational approach that integrates exascale 
metagenomic computing with multi-scale ecosystem modeling.  The computational approach 
exploits machine learning techniques [3] to reduce the dimensionality of larger ‘omics datasets 
that arise from the SFA’s research approach.  These techniques yield a subset of features that 
best predict functional outcomes from microbial community activity [3].  Related computational 
techniques are used to infer interactions between organisms and metabolic products, yielding 
specific research targets for mechanistic studies. Comparative genomics [4], exascale computing 
(NERSC user project) for community metagenome assembly, and metabolic interpolation 
approaches [5] are being applied to improve the quality and functional interpretation of 
metatranscriptomic data, which is the most detailed measurement available for community 
physiology.  These approaches are embedded in a larger framework of modeling and simulation 
of soil carbon cycling. For soil carbon modeling, we are using SOMic 1.0, developed by Cornell 
collaborators [6].  The SFA is applying SOMic at multiple scales (e.g. [7] to guide the design and 
interpretation of experiments to understand microbial community functional processes 
influencing terrestrial carbon cycling.   
 
 
 



Background 
The revolution in technology for ‘omics’ measurements that began over a decade ago continues 
to evolve rapidly, providing ever larger and more complex datasets that document the organisms, 
physiological activity, and metabolic compounds present in microbial communities.  Coupled 
with parallel advances in computational resources and techniques, stronger insights into how 
microbial communities in environmental samples function are possible.  The latest computational 
approaches in use and development in the SFA are described below in the context of the 
following high-level questions the approaches address:   

• What organisms are present? 
• Which organisms are the major players in functional processes of interest? 
• What interactions occur that influence function? 
• What specific physiological processes contribute to variation in community function? 
• What are the consequences of contrasting microbial community functional patterns on 

ecosystems over larger temporal and spatial scales?  
 
What organisms are present? 
 When the SFA began 10 years ago, computational approaches principally addressed “who is 
there” with extremely limited insight into function.  Accessible ‘omics data for complex 
communities at that time were primarily amplicon sequences of taxonomic or functional marker 
genes obtained by PCR, cloning, and Sanger sequencing.  The SFA produced the first large scale 
(10,000 to 20,000 DNA sequences) targeted metagenomic datasets at the time from soil samples 
from DOE-funded field studies examining the impact of elevated atmospheric CO2 and other 
factors in six terrestrial ecosystems [1, 8-10].  Computational tools for community analysis were 
nascent. Computation involved of a suite of separate software tools for sequence alignment, 
clustering into operational units, custom software developed within the SFA to de-multiplex 
samples and create OTU tables, ordination methods to visualize sample similarity, and ecological 
statistical techniques.  As DNA sequencing technology rapidly evolved, the SFA leveraged 
external advances in computational pipelines for amplicon sequence processing [1, 2, 8-10]. Two 
dominant platforms currently exist with a suite of integrated algorithms for quality control and 
rapid processing of vastly larger quantities of data.  The two platforms—USEARCH [11] and 
QIIME [12]—have become community standards, although debate about their relative merits 
continues.  The SFA currently relies on the USEARCH pipeline for amplicon sequence 
processing but periodically re-assesses the performance of QIIME.  For taxonomic identification 
of the sequence clusters provided by USEARCH, the SFA uses the bacterial classifier and fungal 
taxonomic classifiers (to which the SFA contributed [13-15])) hosted by the Ribosomal Data 
Base.  This approach is foundational for every experiment in the SFA prior to down-selection of 
samples for deeper and more costly ‘omics studies.  The approach accounts for about 2000 
bacterial and fungal community profiles currently being processed within the SFA.    
 
Which organisms are the major players in functional processes of interest? 
 To accelerate progress toward program goals, the SFA recently shifted from cataloguing 
microbial responses to environment change (old research strategy) to identifying microbial 
drivers of ecosystem function (new research strategy).  To discover widespread microbial 
processes that drive variation in carbon cycling, the SFA has implemented a clinical research 
paradigm.  The clinical approach involves screening a large number of soil communities to 
identify cohorts that represent contrasting patterns of carbon cycling [16]. The use of cohorts of 



communities from diverse geographic locations facilitates discovery of cosmopolitan features 
that drive functional effects. After taxonomic profiling of communities in each cohort by 
amplicon sequencing and data processing via USEARCH  and the RDP, the profiles are used to 
distinguish a core set of major players that underpin the contrasting patterns of carbon cycling.  
The SFA developed a new computational approach to achieve this task [3]. 
 The computational approach capitalizes on the greater rigor inherent in supervised machine 
learning techniques, wherein data are split into separate training and test sets.  The approach uses 
three different methods—neural networks, random forest decision trees, and indicator species 
analysis—to find and rank microbial features that predict a target variable (e.g. CO2 or dissolved 
organic carbon from soil organic matter decomposition) in regression models with the training 
data.  The features are partially validated by applying the regression models to held-out test data 
(Figure 1).   

 The top features common to all three methods are down-selected as the most robust features 
for focused analysis (Figure 2).   Down-selecting a core set of ‘omics features (in this case, taxa) 
is useful because it reduces the dimensionality of the data.  For example, in analyses thus far, the 
approach has reduced the complexity of microbiome taxonomic features by more than 20-fold 
from over 2000 features to about less than 100.  The down-selected features provide a more 
tractable stepping stone to discover mechanisms through inferential analysis of organism traits in 
published literature [5] or by further experimental approaches.  Both avenues are currently being 

used in the SFA.     

Figure 2. Overlap of taxonomic 
features from 3 techniques that 
predict DOC abundance in pine 
litter microcosms at day 44 of 
decomposition.  The tri-method 
intersection set (enclosed by dashed 
line) is the most robust subset of 
features for further study.  From 
[5]. 

Figure 1. Regression model 
predicting dissolved organic carbon 
abundance in microcosms of 
several hundred microbial 
communities decomposing plant 
litter.  Top panel shows prediction 
performance with training data. 
Features were ranked by a neural 
network algorithm.  Bottom panel 
shows prediction performance with 
the same features and regression 
model applied to test data.  From 
[5]. 



     This approach is aligned with the SFA’s clinical research paradigm, which provides the much 
larger quantity of data needed to adequately support use of machine learning techniques.  The 
software is available on GitHub [3] and is already in use by other research groups.  Although 
there are several other platforms (e.g. QIIME2) that facilitate generic use of machine learning 
techniques with microbial community data, our analysis software provides several unique 
options that make it more accessible and useful for microbial ecologists.  For example, the 
software facilitates sensitivity analyses that allow users to assess the stability of their results as a 
function of the number of samples (communities) represented in their dataset. The software also 
allows users to confirm the subset of top features common to the three methods is an acceptable 
subset for predicting the target functional variable (Figure 3).  The software also allows users to 
assess how prediction performance increases as the ranked features in the set are sequentially 
added to a regression model.   

 
What interactions occur that affect function? 
 Feature lists from the SFA’s machine learning platform are an important first step toward 
discovering the mechanism(s) maintaining C flow variation, but additional insights about 
interactions from the molecular to ecosystem level can be obtained from other machine learning 
techniques. Probabilistic graph modeling is a class of techniques of growing interest across 
disciplines because it facilitates uncertainty quantification.  Within this class of techniques, the 
SFA began exploring the use of Bayesian networks to assess the structure of interactions among 
variables of interest (i.e. taxa and DOC).  Probabilistic graphical models like Bayesian networks 
attempt to model the joint probability distribution of a set of random variables in terms of a 
graphical structure. The nodes of the graph represent random variables, and the edges between 
nodes represent dependencies between the random variables.     
 To explore interactions between taxa and dissolved organic carbon (DOC) from soil organic 
matter decomposition, the SFA first uses our basic machine learning platform [3] to significantly 
reduce the number of variables. The reduced set of taxa is then used to model the joint 
distribution of taxa and DOC with a Bayesian network.  Once the joint probability distribution 
between taxa and DOC is learned from training data, the model can be applied to prediction of 
DOC on held-out testing data.  A Bayesian network structure determined from pine litter 
microcosm communities is shown in Figure 4. Classification accuracy (i.e., predicting DOC 
abundance) on held-out test data was >80%, which is a promising start.  Because this approach is 

Figure 3. Prediction performance of 
consensus features.  Performance is 
measured as the Pearson correlation 
between observed DOC and predicted 
DOC with the given features in a 
Random Forest model.  



more computationally intensive, our current 
implementation limits the number of 
variables (nodes) to about 20 or less.   
 A useful aspect of this approach is that 
it has the potential to predict directionality 
of interactions.  At one extreme, 
interactions can be strictly one-directional 
among a suite of taxa with DOC as either 
the top parent node or the final child node. 
Such a structure would indicate a 
hierarchical network of metabolic hand-offs 
among taxa consuming DOC or producing 
DOC, respectively.  This outcome would 
suggest that a single organism near the top 
of the hierarchy could be manipulated to 
alter DOC abundance.  At the other 
extreme, a non-hierarchical network could 
occur, suggesting a loose confederation of 
organisms that work independently in the 
decomposition process and all taxa must be 
manipulated in aggregate to alter carbon 
flow. Distinguishing these contrasting 
possibilities is important because the 
outcome strongly shapes discovery and 
management of microbial mechanisms 
controlling carbon flow in soils.   

 With continued development, we expect to obtain network models like Figure 4 that 
substantially improve interpretation by showing the degree of statistical support for each 
directional connection in the network.  Initial attempts to apply Bayesian network models in a 
cross-ecosystem validation study are suggesting some aspects of network architecture are 
conserved for decomposer communities on different types of litter.  These encouraging results 
suggests the combination of the SFA’s experimental strategy and the network cross-validation 
approach may facilitate discovery of robust phenomena among ecosystems.  The SFA is 
continuing to develop this approach.  The central challenge is clear representation of uncertainty.  
Without uncertainty quantification, it is easy to generate irrelevant or misleading network 
structures.  Further development includes assessing performance relative to techniques 
developed by others [17, 18] and manipulative experiments to validate inferences.   
 A benefit of using taxonomic profiles as source data to infer community interaction networks 
is that the data quantity (i.e., number of community profiles) required to construct these 
statistical models is more tractable.  A weakness is that bacterial and fungal components of 
microbial communities are separately profiled, hindering integrated analysis.  The SFA is 
addressing this limitation by developing a new profiling method that enables integration of 
bacterial and fungal taxonomic profiles [19]. 
 

Figure 4. Discrete Bayesian network model of the 
dependency between DOC and a set of 12 selected genera. 
Graph structure was inferred from pine litter microbiome 
data.  



What specific physiological processes contribute to variation in community function? 
 Given a set of core taxa and interactions (from methods above) that drive contrasting patterns 
of carbon flow, the SFA uses three approaches to assess the underlying distinctive physiological 
processes --- inference from published phenomic data, inference from genomic data, and analysis 
of metatranscriptome data.   
 Inference from published phenomic data is a labor-intensive literature search for traits that 
are reported as characteristic of specific taxa [5].  For example, some taxa are specialists for 
specific types of metabolism (e.g., photosynthesis, methanotrophy, inorganic sulfur cycling) or 
ecological strategies (prolific antibiotic production, specialization as oligotrophs, predation of 
other microbes).  After literature mining, routine statistics are applied to assess significant 
differences between community cohorts [5]. The absence of an appropriate trait database is a 
resource gap.  The SFA is exploring ways to address this gap in concert with external groups.   
 Inference from reference genomes in DOE’s IMG is a computational capability established 
by others in 2013 [20].  For example, the PICRUSt tool (Phylogenetic Investigation of 
Communities by Reconstruction of 
Unobserved States) is a 
bioinformatics software package that 
matches a bacterial taxonomic profile 
(16S rRNA gene sequences) from a 
community to references genomes 
and derives a predicted metagenomic 
functional profile [20].  The SFA has 
used this software to infer potential 
physiological activities that 
significantly differ in abundance 
between plant litter decomposer 
community cohorts with contrasting 
patterns of carbon flow (Figure 5) 
[5].   Owing to known limitations of 
the PICRUSt tool, the SFA 
recapitulates the underlying 
algorithm manually with the subset 
of core taxa derived from machine 
learning techniques described in 
previous sections above.  The SFA is 
exploring automation and 
modifications of the process that will 
improve data interpretation. 
 Phenomic and genomic 
inferences generally reflect 
functional potential. To obtain a 
more complete perspective, these 
inferences are integrated with analysis of metatranscriptome data, which is a more direct 
measurement of community activity.  The SFA currently uses a combination of MG-RAST 
(supported by Argonne National Lab) and a custom workflow on our own server as the principal 
approach for functional annotation and analysis of shotgun metagenomic and metatranscriptomic 

Figure 5. Physiological differences in PICRUSt predicted 
metagenomes in community cohorts with high versus low 
abundance in DOC after 44 days of plant litter decomposition 
in microcosms.  Shown are 25 functional processes with 
significant 5-fold or greater differences in abundance. 



data [5].  In an external benchmark study, MG-RAST performed the best for functional analysis 
of metagenomes [20].  We supplement the MG-RAST analysis with a custom pipeline that 
enables specific annotation of Carbohydrate Active enZymes (Figure 5).  We recently evaluated 
KBase as a potential platform for metatranscriptome analyses, wherein a suite of applications 

could be strung together provide a complete analysis pipeline.  However, metatranscriptome 
analysis is a nascent capability at present in KBase; a number of analysis gaps will require 
installation of additional applications on KBase to achieve a complete pipeline (Figure 6).  
 
 Exascale computing to improve metatranscriptome analysis. A fundamental step that is 
routine in transcriptome (single-organism) studies but remains difficult to achieve with soil 
metatranscriptomics is assembly of reads into contigs.  Assembly increases sequence lengths, 
which is important for greater annotation accuracy, especially for complex microbial 
communities containing many species that are only distantly related to existing reference 
genomes.  Assembly can also enable detection of differential expression at the gene level 
(instead of gene-family level) by creating gene scaffolds to which sequence reads can be 
mapped. Thus far in the SFA, attempts to assemble metagenome or metatranscriptome data have 
provided so few contigs that analyses revert to the cruder use of unassembled sequence data [21].   
 As a step toward addressing the assembly problem, the SFA launched an effort through a 
NERSC user-facility proposal to build ecosystem consensus assemblies that the research 
community can leverage to map transcriptome reads from a single study.  The concept involves 
gathering all metagenomic and metatranscriptomic data available for a particular ecosystem (or 
ecosystem type) produced from different experiments, labs, and sequencing platforms.  The 

Figure 6. Metatranscriptome analysis pipelines.  At present, the SFA routinely uses MG-RAST and 
separately, an internal server for annotation of CAZymes.  A suitable pipeline in KBase is not yet available. 



collective data increase the likelihood of achieving an effective assembly, which can be 
sequentially improved over time as additional data become available.   
 To test the concept, the SFA is collaborating with other LANL scientists (Dr.s Patrick Chain 
and Migun Shakya) and with the developers of the MetaHipMer assembly program to create a 
soil biocrust consensus assembly.  This is a unique dataset (~ 1TB) to test the ultra-fast and 
highly scalable assembler, MetaHipMer [22]. The large dataset consists of sequences generated 
using older 454 sequencing technology and current Illumina sequencers, and both metagenome 
and metatranscriptomes derived from different biocrusts at different times mostly from prior 
studies in the SFA. Because it is a diverse dataset, it requires large shared memory and currently 
starts assembly using 800 nodes (~ 64GB X 800 = 51.2TB) in KNL architecture of Cori. We 
estimate that it will require at least 300 minutes of wall clock time, which equates to around 15M 
CPU minutes (250K hours). This effort will also explore the effect of varying k-mer sizes on 
assembly quality, which will require similar time for assembly. If effort is successful, the SFA 
will use transition to using this approach as a foundational step to improve the accuracy and 
insight for future transcriptome studies. 
 Comparative genomics to refine metatranscriptome analysis.  A desired goal with 
environmental metatranscriptomics is to relate the abundance of expressed metabolic pathways 
to rates of biogeochemical cycling (e.g. the rate or prevalence of inorganic nitrogen cycling, 
which is linked to carbon cycling).  This goal is undermined in part by errors in quantification of 
the expression of key pathways.  One source of error is failure to account for expression of 
incomplete pathways.  That is, some organisms may contain and express an incomplete set of 
genes for a pathway, rendering the pathway nonfunctional yet contributing to a false positive 
metatranscriptomic signal of pathway activity.  The SFA began addressing this problem through 
comparative genomics, leveraging 6000 complete genomes in DOE’s IMG database.  Incomplete 
N-cycling pathways were found in 39% of surveyed species [4]. The vast majority of species 
with complete pathways had limited ability to utilize inorganic N in multiple oxidation states, 
which suggests the extent of nitrogen leaching from ecosystems is influenced by the composition 
and spatial organization of species that must perform inter-species nitrogen transfers [4].  The 
SFA is extending this approach to other elemental cycles and pursuing a metatranscriptomic 
analysis capability that will automatically account for potential false positives. 
 
What are the consequences of microbial community functional patterns over large 
temporal and spatial scales?  
A distinctive facet of the SFA’s recent shift in research strategy has been to use soil carbon 
modeling and simulation as an overarching framework to guide research priorities, experimental 
design, and to improve data interpretation.  The SFA is using SOMic, a microbially-based SOC 
model recently developed by Cornell collaborators Dr.s Dominic Woolf and Johannes Lehmann 
[6].  SOMic captures the recent shift in concepts about organic matter persistence, wherein 
persistence depends on microbe-mineral-organic matter interactions, instead of recalcitrance of 



the organic matter.  As described in [6], 
“SOMic assumes that microorganisms take up 
only dissolved organic carbon (DOC), because 
substrates must be in solution to cross the cell 
membrane (Figure 7). Microbial uptake of DOC 
competes with sorption to minerals and 
occlusion within aggregates, whose rate is 
determined by mineral surface area 
(approximated by the clay fraction). Microbial 
uptake is then apportioned between growth and 
respired CO2 according to microbial C-use 
efficiency, which is dependent on temperature. 
Organic matter inputs undergo 
depolymerization and/or dissolution before 
entering the DOC pool. Rates of 
depolymerization and dissolution of organic 
matter, and desorption of mineral-stabilized SOC are mediated by microbial enzyme activity 
according to reverse Michaelis-Menten dynamics.”  Key insights from SOMic simulations 
suggest SOC persistence may depend on ecological constraints---microbial interactions with 
mineral-associated carbon---to a greater degree than assumed in most previous models [6].  
Based on this insight, the SFA has launched research investigating variation in microbial 
community features that drive variation in interactions 
with mineral-associated carbon. 
 The SFA is using to SOMic to guide experimental 
design by simulating potential consequences of microbial-
driven variation in carbon flow observed in small-scale 
experiments at larger spatial and temporal scales.  The 
simulations provide predicted dynamics of microbial 
biomass, respiration, and soil organic matter abundance.  
Consequently, the simulations aid planning for the timing 
of measurements needed to capture key microbial 
dynamics as well as the time interval required for 
significant ecosystem changes to be detectable. For 
example, using the range of differences observed among 
soil communities decomposing surface plant litter in a 
prior microcosm study, we applied SOMic to simulate 
potential consequences in a more complex mesocosm 
system over a longer time-course with many cycles of 
litter renewal and decomposition (Figure 8).  Five 
different litter decomposition patterns were modeled.  The 
simulations estimated the minimum number of cycles 
required for an experiment (currently underway) to 
achieve detectable differences in soil carbon abundance – 
a crucial detail for experimental design.     
 The SFA is also using SOMic to improve data interpretation [7].  A strength of SOMic is that 
it can be applied to gain insight into microbial dynamics and soil carbon cycling at many scales, 

Figure 7.  Schematic of the SOMic 1.0 model for 
soil organic carbon (SOC). From [6]. 

Figure 8.  SOMic predictions of soil 
organic carbon dynamics in mesocosms 
with different levels of DOC flux. 
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ranging from days in simple laboratory microcosms [7] to the decades at the global scale [6].  
We used SOMic to assess if differences in the quantity of microbial biomass added to laboratory 
microcosms could be a substantial factor in the large variation in carbon flow observed among 
communities decomposing plant litter over a short (6-week) timescale [7].  The simulations from 
SOMic showed respiration (CO2 efflux) dynamics that matched experimental measurements 
(Figure 9) and provided substantial information such as probable microbial biomass dynamics 
that was not possible to measure in the experiment.   
 

 The SFA’s new focus on tight integration of modeling (SOMic) and experimentation will 
enable further refinement of SOMic, which will enhance the power of this capability to increase 
the quality, efficiency, and pace of the SFA research program. 
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